Category: Governmental Interaction

NASA stock photos

NASA stock photos

Earlier in this blog I wrote about the need for standardized definitions of nanomaterials so that all enterprises, government agencies, and international organizations can be on the same page when considering the need for regulation or compliance.  The need for consistency and conformity surfaces elsewhere, too, such as in communicating hazards in the workplace.

For some time, the U.S. Occupational Safety and Health Administration (OSHA) has been pondering these issues.  In 2009, OSHA proposed a rule to align the Hazard Communication Standard (which, among other things, classifies hazards and establishes appropriate means of communicating the hazards to workers, such as via Material Safety Data Sheets (MSDSs)) with the United Nations Globally Harmonized System of Classification and Labeling of Chemicals (GHS).  The problem is that not enough is known about the health and safety risks of nanomaterials at the present time, and this lack of knowledge has delayed accurate and appropriate hazard communication.

One issue is the absence of information about nanomaterial hazards on the MSDSs that must accompany chemicals from the manufacturer/importer to the workplaces where the chemicals will be used.  Currently, the U.S. Hazard Communication Standard is silent on this. 29 C.F.R. § 1910.1200. 

The lack of sufficient data has not deterred initiatives in other countries, however.  It has been reported that France has filed a document with the U.N. surveying research on the hazards of nanomaterials that has been carried out by the EU and elsewhere.  China has put into place some compulsory standards implementing the GHS.  And other countries on several continents are in the process of working on the GHS initiative.

In the most recent example, Switzerland issued guidelines in December 2010 to assist industry in providing important information to workers on safety data sheets (SDSs) about the safe handling of synthetic nanomaterials.  State Secretariat for Economic Affairs, Safety Data Sheet (SDS):  Guidelines for Synthetic Nanomaterials (Dec. 21, 2010), available at http://www.seco.admin.ch/themen/00385/02071/index.html?lang=de

The basis for the Swiss action is summarized in its report as follows:

“A conclusive assessment of the risks caused by nano-sized materials is not currently possible, for two reasons.  On the one hand, no conclusive tests have been carried out on a wide variety of nano-objects and micro-sized particles can rarely be transferred onto corresponding nano-objects.  On the other hand, the toxicological test processes which are carried out nowadays can only be applied in a limited scope to nano-sized materials.

 Based on the results of animal experiments, potential damage to health cannot currently be ruled out for certain nano-sized materials.  Nano-particles in certain materials (e.g. flammable or catalytic substances) also conceivably represent a potential risk due to fire, explosions or unexpected chemical reactions.”  (Guidelines, p. 8 )

 Accordingly, the Swiss Guidelines recommend that:

“ •  existing SDSs should be supplemented by nano-specific data as set out in the information on the present document or

•  a separate SDS be drawn up for the nano-objects in question.” (Guidelines, p. 4)

 In the United States, the MSDS is the current gold standard for communicating hazard information to those who handle substances in the workplace.  Because of the possibility that substances at the nano-level may behave differently, it is best to err on the side of safety for workers and the environment.  Although it may not be possible to get every agency and country on the same page immediately, they should all make it a priority to get on page one.  The rest will follow.

 

Some material for this post was found in

Greg Hellman, Nanotechnology:  Lack of Data may Impede OSHA Plan to Create Hazard Class Aligned with GHS, 40 Occup. Safety & Health Rptr. (BNA) 444 (May 27, 2010) (subscription site)

nano 3On November 30, 2010, the American Industrial Hygiene Association (AIHA), in commenting on the draft 2010 strategic plan of the National Nanotechnology Initiative (NNI), recommended that nanomaterial safety be incorporated in graduate curricula.  AIHA lamented that many recent American graduate school degree recipients are ill-equipped to effectively assess the industrial health and safety risks of nanomaterials in industrial settings.  And, as AIHA pointed out, many recent grads have already had significant exposures to nanomaterials.

 The beginnings of a solution are relatively simple.  AIHA has recommended that the consortium of federal agencies involved in implementing the NNI strategic plan develop guidelines for graduate research programs.  The draft plan itself contains suggestions for actions by the National Institute for Occupational Safety and Health (NIOSH), such as investigation of a broad spectrum of nanomaterials and recommendation of safe exposure limits.

 The full solution may be much more complex, however.

 This issue reminds me of a broader concern that receives news coverage from time to time.  Maybe not often enough.  We frequently hear that the United States continues to lag behind the rest of the developed world in student science performance.  The Organization for Economic Cooperation and Development (OECD), of which the United States is a member, keeps track of such things.  In the most recent rankings of science performance among OECD nations (updated rankings due soon), the United States continued to be below average and ranked 22.

 The bar is being set a little higher for science performance in the schools with the proliferation of nanotechnologies and their highly sophisticated use in many products and medical procedures.  AIHA has said that many newly minted scientists “are unaware of the fundamentals of nanomaterial safety.”  Beyond assuring that nanomaterial safety fundamentals are taught and implemented in graduate programs, nanotechnology and nanomaterial safety should become a part of the basic science curriculum at every relevant level of American education.

 Source:

Greg Hellman, Industrical Hygienists Say Nanomaterial Safety Should be Part of Graduate Curriculums, BNA Chemical Regulation Rptr, Nov. 30, 2010

 Some information on OECD rankings is available at

http://ourtimes.wordpress.com/2008/04/10/oecd-education-rankings/

usalawyerstoday.com

usalawyerstoday.com

We would like to thank those of you out in cyberland who have found our blog – now only 9 months old – and have been interested in what we have to say about the emerging issues in nanotechnology and the law.  We hope that you continue to follow us in the coming months.

Writing a legal analysis blog has been a challenge.  Because of our interests in cutting-edge legal issues, in particular toxic torts and biotechnology, we have especially enjoyed the challenge of relating nanotechnology to existing and evolving legal doctrines.

Our promise for 2011 is to step up the pace of our posts while still maintaining our commitment to accurate and high-quality legal analysis.  As always, we welcome your comments on the blog.

Nanotechnology is a new frontier in the law, and we look forward to being able to offer readers our thoughts and insights on how the law will meet the challenges it presents.

 Best wishes for the new year.

nano 3On November 22, 2010, EPA submitted a proposed rule under Section 8(a) of TSCA to the Office of Management and Budget for its review.  The proposed rule includes reporting requirements for manufacturers of nanoscale materials and could be published in the Federal Register for public comment in December.

 The first of three proposed rules expected in 2011, this proposed rule would require disclosure of information on manufacturing and processing, as well as on exposure and release of nanomaterials.  This is merely a prelude to any actual regulation of the industries and processes making use of nanotechnology.  It is a critical step toward reducing risks to human health and the environment.  But it also highlights the fact that regulation of nanomaterials is a long, slow process that may not yield satisfactory results for many years.

 In September, an EPA representative told members of the nanomaterials industry, “We are at the stage where we really don’t have a clear idea of how to manage risk. . . . The more information we can collect through regulation—on what is being manufactured, toxicity data, and the development of the proper protocols for measuring toxic effects of the nanomaterial—the better off we will be to manage the risk and demonstrate to the American people we have a handle on the issue.”

 The current proposal can be seen as early steps in risk assessment, but far from the risk management eventually envisioned by EPA.

The European Union may be further ahead.  On November 24, 2010, the European Parliament voted to extend its restriction on many hazardous substances to most electrical and electronic products, but stopped short of imposing a restriction on nanosilver and carbon nanotubes.  Observers say that it is likely that these substances will be incorporated into the law when the law comes up for review in three years.  Thus, the EU may be heading toward management of the risks of nanotechnology more quickly than the U.S.

 Even so, why so slow?  Regulators should get moving on resolving obstacles such as the scope of nanoscale definitions, deciding how much data is enough before effective regulation may be accomplished, and whether small businesses warrant an exception to regulation.

 

Sources (all by BNA subscription):

225 BNA Daily Env’t Rptr. A-6 (Nov. 24, 2010)

34 BNA Chemical Reg. Rptr. 1149 (Nov. 24, 2010)

34 BNA Chemical Reg. Rptr 960 (Oct. 4, 2010)

nano 5

In an earlier post, I wrote about the consternation surrounding patents on genes and the potential implications to the developing realm of nanotechnology.  Recently, an amicus brief was filed with the Federal Circuit by the Department of Justice (DOJ) opposing the patents that were issued to Myriad regrding the testing for breast and ovarian cancer.  Interestingly, the United States Patent and Trademark Office (USPTO) did not join the DOJ, which indicates an idealogical rift in the Obama administration.  It was reported that Mr. Kappos, current director of the USPTO, ”seemed chagrined that the Department of Justice was taking a viewpoint very different from the patent office.”

The following is an excerpt from the amicus brief Table of Contents which is rather revealing and informative regarding the government’s opinion on the matter:

A. Section 101 Embraces Only “Human-Made Inventions”
B. Engineered DNA Molecules, Including cDNAs, are Human-Made Inventions Eligible For Patent Protection
C. Isolated But Otherwise Unmodified Genomic DNA Is Not A Human-Made Invention
1. Unmodified Genomic DNA Is A Product Of Nature
2. “Isolation” Does Not Transform A Product Of Nature Into A Man-Made Invention
3. Isolated Genomic DNA Is Not Patent-Eligible Merely Because It Is A Literal Composition Of Matter
4. Isolated Genomic DNA Is Not Rendered Patentable On The Theory That It Is “Pure”
5. Isolated Genomic DNA Is Not Patent-Eligible Merely Because It Is Useful Or Requires Investment To Identify

It is important to note that the DOJ is not advocating an all-out ban on patents on genes, just those that are ‘unmodified.’  Initially, this will allow for further development of the information contained in the genomic code.  It seems as though the big argument revolves around the pieces of the code that are isolated, but not changed in any way.  Proponents assert that there should not be the reward of patent protection based solely on finding that which already naturally occurs.  Opponents argue that invention and development of specified uses for these segments of DNA would be stiffled, and the United States’ position as a global leader in the life sciences would be severely compromised.

It will be interesting to watch the development of the subject matter as it works its way through the Federal Circuit, and presumably the Supreme Court.  Not only for the impact it will have on the biotechnology arena, but also on nanotech.  As mentioned before, many argue that the majority of inventions involving nanotechnology do not qualify for patent protection because they are not far enough removed from the naturally occurring material they are comprised of.  We shall see.

Link to the DOJ brief:

http://graphics8.nytimes.com/packages/pdf/business/genepatents-USamicusbrief.pdf

www.h20technologies.com

www.h20technologies.com

The U.S. National Nanotechnology Initiative (NNI) Strategic Plan Draft was posted at http://strategy.nano.gov for public comment on November 1, 2010.  The NNI was launched in 2001 with 8 agencies and now consists of the nanotechnology-related activities of 25 agencies.  Fifteen of these agencies have R&D budgets related to nanotechnology.

In reflecting on the 10-year history of U.S. nanotechnology research and development, the NNI Draft highlights its work as having “established a thriving nanotechnology R&D environment, laid the crucial groundwork for developing commercial applications and scaling up production, and created demand for many new nanotechnology and manufacturing jobs in the near-term.”  (Draft, p. 1)  Looking to the future, the NNI notes that nanotechnology R&D is “far from full realization.”  (Draft, p. 2)  The goals of the NNI continue to be broad:  continued development of R&D; developing the technologies into products for commercial and consumer use; and developing the physical and human resources to achieve these goals.

Goal 4 of the Draft Strategic Plan is “Support responsible development of nanotechnology,” including the twin goals of understanding and managing the risks of the technologies.  Among the NNI participating agencies in 2010 are EPA, FDA, National Institutes of Health (NIH), and National Institute for Occupational Safety and Health (NIOSH).

The NNI Draft Strategic Plan focuses directly on the benefits of nanotechnology, rather than the risks.  But many of the participating agencies – and many more – need to be involved on the risk side of the proverbial risk-benefit analysis.  This is happening, as reported previously in posts on this blog ranging from FIFRA to TSCA to the FDCA.

 But equally important is the need for communication and coordination on both the benefits and risks of nanotechnology.  And that extends beyond governmental regulation to businesses and nongovernmental organizations (NGOs).

Aside from governmental action, various voluntary initiatives and partnerships have emerged.  A report out of the Woodrow Wilson  International Center for Scholars, “Voluntary Initiatives, Regulation, and Nanotechnology Oversight:  Charting a Path,” gives an overview of the initiatives – some publicly sponsored, some developed by business, and some representing joint business-NGO partnerships.  These initiatives have the common, though separate, goal of developing a strategy to oversee environmental, health, and safety risks raised by nanomaterials.  The report is available at http://www.nanotechproject.org/publications/archive/voluntary/

Three initiatives discussed in some detail in the report are:

 ●  “Nano Risk Framework,” jointly developed by duPont and the Environmental Defense Fund (EDF)

 ●  “Responsible Nano Code,” sponsored by stakeholders from the United Kingdom

 ●  “Nanoscale Materials Stewardship Program,” developed by EPA

 The report critically analyzes these specific initiatives – as well as others more generally – and concludes that they have a welcome role in the future of nanotechnology safety and health efforts.

The ideal world does not exist, of course.  But in this world, a strategy that incorporates the risks and benefits of these developing technologies and brings together as many varied interests as possible representing all affected parties, including the environment, is warranted.  It can provide needed checks and balances along the way.

Getty Images

Getty Images

The good news is that both the European Union and Australia are moving toward adopting definitions of “nanomaterials” that will be used for setting standards for and developing regulation of these substances.  The news that may give some people cause for thought is that the definitions are not identical.

 This post is an update to my original post on the subject and looks at two definitions.  Consider the following.

  The European Commission, in a draft recommendation currently available for public consultation, has defined “nanomaterial” as

 “a material that meets at least one of the following criteria:

– consists of particles, with one or more external dimensions in the size range 1 nm – 100 nm for more than 1% of their number size distribution;

– has internal or surface structures in one or more dimensions in the size range 1 nm – 100 nm;

– has a specific surface area by volume greater than 60 m²/cm³, excluding materials consisting of particles with a size lower than 1 nm.”  (Art. 2, Sec. 1)

 The European Commission’s draft also indicated that the definition will be used “as an overarching, broadly applicable reference term for any Union communication or legislation addressing nanomaterials.”  (Preamble, 12)  Moreover, the Commission has recommended that the definition be reviewed frequently and adjusted to reflect scientific advances.  (Preamble, 7)

The Australian government is using a different definition, however, in a new administrative process published by the National Industrial Chemicals Notification and Assessment Scheme (NICNAS).  The procedure requires new chemical manufacturers and importers to notify NICNAS of their intent to manufacture or import nanoscale chemicals and defines “nanomaterials” as

 “industrial materials intentionally produced, manufactured, or engineered to have unique properties or specific composition at the nanoscale, that is a size range typically between 1 nm and 100 nm, and is either a nano-object (i.e. that is confined in one, two, or three dimensions at the nanoscale) or is structured (i.e. having an internal or surface structure at the nanoscale”

 Further, the Notes to the working definition add that “where size distribution shows 10% or more of a substance (based on number of particles) is at the nanoscale, NICNAS will consider this substance to be a nanomaterial for risk assessment purposes.”

 The different definitions raise several issues:

 ●  The difference between 1%, per the European Commission, and 10%, per Australia’s NICNAS, could mean that many more substances would fall within the definition under EU standards than under Australia’s standards.

 ●  In an increasingly global economy, should manufacturers of nanomaterials be required to meet separate standards based upon definitions that vary from government to government?  One answer to this question is, Why not?  Manufacturers of chemicals and other products are frequently asked to meet different standards around the world, where some countries may be quite stringent and others lenient.  The tobacco industry moved a large segment of its business to Asia in response to litigation and regulation in the U.S., hoping to take advantage of a different regulatory climate.  Conversely, however, varying regulatory standards for chemicals can create difficulties and confusion for manufacturers and importers.

 ●  Nanotechnology is not only new to regulation as a discrete category, but will also be regulated in the international arena in the first instance.  Wouldn’t consistency, at least in the definition of nanomaterials, best serve this process?

 ●  Nanotechnology is widely viewed as beneficial with broad potential across all sectors of modern life.  Consistent definitions of what constitutes nanomaterials would assist firms in making business decisions going forward.

 Perhaps different definitions are only a step along the way toward ultimate agreement and consistency in the global arena.  Let’s hope so.

 The European Commission draft is available at

http://ec.europa.eu/environment/consultations/nanomaterials.htm

 The NICNAS processes are available at

http://www.nicnas.gov.au/Publications/Chemical_Gazette/pdf/2010oct_whole.pdf#page=14

Wikimedia

Wikimedia

What do the Gulf oil spill, the attacks on the World Trade Center on September 11, 2001, and nanotechnology have in common?  On the surface, it would seem to be nothing.  But all three involve responses to potential health and environmental threats that are instructive about how we as a society respond to such threats.  Collectively, they raise some important issues regarding how our society views health and environmental risks in general.

 Don’t get me wrong.  In no way am I suggesting that nanotechnology is comparable to the disasters at Ground Zero or in the Gulf.  Rather, I am asking that you look at how government and funded research institutes manage long-term health and environmental effects that occur as a result of chronic low-dose exposures over time.  The potential health hazards of nanotechnology fall into the long-term category.  We don’t expect to see any acute health problems associated with nanotechnology, but we should be concerned about long-term exposures, and existing efforts to study the effects should be expanded.

 Let’s contrast what happens when there is a disaster.

 On August 19, 2010, administration officials reaffirmed their commitment to the recovery and restoration of the Gulf in the aftermath of the Deepwater Horizon oil rig explosion and the subsequent movement of oil into the waters and the ecosystems of the Gulf.  The media outlets have been full of video, photographs, and articles about the efforts of many organizations, companies, and governmental entities to clean up and minimize the potential harm to natural resources, the environment, and all forms of life.

 Not so long ago, something similar went on at Ground Zero in the aftermath of the collapse of the World Trade Center towers following the 9/11 terrorist attacks.  Early on, the focus of efforts at Ground Zero was on the search for survivors.  On September 29, the focus turned to recovery and cleanup, including removal of debris.  But even before that date, the federal, state, and local governments were engaged in managing the environmental disaster that resulted from the release of hazardous substances into the air, including asbestos, silica, lead, mercury, polycyclic aromatic hydrocarbons (PAHs), dioxin, polyvinyl chloride (PVC), Freon, and polychlorinated biphenyls (PCBs), to name a few.  Workers from FDNY, NYPD, Port Authority of New York and New Jersey, emergency medical personnel, and a host of volunteers worked at the site.

 It is easy to assign massive resources to the acute phase of a disaster, but much harder to sustain interest and funding as time goes on.  Eventually the media will move on to other stories now that the Macondo well is just about sealed, as it eventually did when the cleanup at Ground Zero was completed.  Funds have been established to make payments, lawsuits commenced.  But what lingers is the reality of long-term health effects that could emerge over time – ecosystem damage or cancer or other health risks.  Society has a certain myopia about such things.  Perhaps it is human nature to not want to think about the health problems that could arise years down the line.

 The protracted task of developing valid scientific studies on the health effects of any exposures, including nanoparticles, and interpreting the results is as essential as responding to the acute phase of a disaster.  Disasters like the Gulf spill and 9/11 suggest a kind of false dichotomy – that acute harms are more worthy of recognition in the law than chronic long-term harms.  The long-term harms may seem less urgent, but there is nevertheless an urgency about them as well.

 For example, following the Exxon Valdez oil spill in 1989, no concerted effort was made to assess the health effects of the cleanup on workers.  Years later, surveys told the story of respiratory and neurological illness.  This month, the National Institute of Environmental Health Sciences announced it would begin a study of the potential health effects of exposures of workers and residents as a result of the Gulf oil spill.  Even in the 9/11 context, where health screenings of Ground Zero responders have been ongoing since 2002, and a data base has been established, acceptable compensation has come nearly a decade after the disaster.  The law is slower to recognize the harms from chronic exposures, and slower to act to both compensate the injured and prevent further harm.  Clearly, some of this is a result of symptoms and other harms emerging over time.  But this is all the more reason to be vigilant and investigative from the start.

 Far from the spotlight of a high-profile disaster, and in the absence of a clearly exposed population to screen, studies on the health and environmental effects of exposures to substances about which we know little is essential.

 As mentioned, nanotechnology is not a disaster.  Far from it.  It is a means for creating better medical therapies, making some of our technology perform better, and offering consumers desirable features in everyday products such as textiles and cosmetics.  But this does not eliminate the need to make a concerted effort to study the long-term health and environmental effects of nanoparticles and nanomaterials.  No matter how long it takes; no matter how far out of the spotlight.

 For those interested in knowing more about the toxic aftermath of Ground Zero, see my article, Toxic Torts at Ground Zero, 39 ARIZ. ST. L.J. 383 (2007).

On the need for studies of the health impact of the Gulf spill, see

Gina M. Solomon & Sarah Janssen, Health Effects of the Gulf Oil Spill, J.A.M.A. (Aug. 16, 2010), available at http://jama.ama-assn.org/cgi/content/full/jama.2010.1254v1

www.singularityhub.com

www.singularityhub.com

I previously discussed the recent efforts to expand and revise the interpretations of the Toxic Substances Control Act (TSCA) and the Food, Drug and Cosmetic Act (FDCA) to reach nanotechnology.  Simultaneously, efforts have been ongoing to expand and revise the interpretation of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) – the federal pesticide statute – to similarly encompass nanotechnology.  In particular, the proposed interpretation would require any nanoscale material used in a pesticide to be considered a new substance, and subject to adverse effects determinations in place for new substances, even if a non-nanoscale form of the same material has already been in a product registered under the act.

 This proposed FIFRA interpretation is clearly part of the trend to bring nanotechnology under existing regulations and confirm the authority of existing agencies to make determinations about the safety of nanomaterials.  But is this a good idea?

 One bone of contention in the proposed FIFRA interpretation is the proposed application of Section 6(a)(2) to require pesticide manufacturers to report the deliberate inclusion of intentionally produced nanomaterials in their products.  Section 6(a)(2) is often referred to as the “adverse effects” section of FIFRA.  The implication, therefore, would be that nanomaterials would be presumed to have adverse effects.  EPA says otherwise, however, stating that the proposed interpretation would emphasize data collection, while also including adverse effects.  EPA also says that the proposed interpretation would reach substances other than nanomaterials.

 The nanotechnology-related industries have reacted with sharp criticism of the proposed interpretation, though they continue to recognize that regulation is inevitable.  Several industry groups, most notably the American Chemistry Council, have expressed concern that the proposed interpretation would “stigmatize” all uses of nanotechnology in pesticides, especially because it would use the “adverse effects” section of FIFRA as the primary means of regulation.  They say other sections of FIFRA would be more neutral and less stigmatizing.  This may be the case and deserves further consideration.  On the other hand, if those other sections do not permit EPA to conduct the kind of safety analyses permitted under Section 6(a)(2), there would be no advantage to the public in applying the other sections instead.

 Furthermore, industry groups have rallied around the general debate over the health and safety of nanomaterials.  FIFRA officials have cited existing studies tending to show risks to human health and the environment from nanomaterials.  An industry group, the Silver Nanotechnology Working Group, has claimed that concerns for health and the environment are overstated, insisting that long-term data show nanomaterials to be safe.  This debate seems to be premature.  It makes little sense at such an early juncture – when some data exists, but more is clearly warranted – to argue that minimal regulation is the best way to go.

 Another major concern of industry has been the costs of preparing and producing the data that would be required under the proposed interpretation.

 (The reactions of government officials and industry mentioned above were reported in:  Pat Rizzuto, EPA Developing New Interpretation, Policy on Pesticide Law for Nanoscale Ingredients, 121 Daily Env’t Rpt. (BNA) B-1 (June 25, 2010).)

 As I’ve said before, there are positives and negatives to the trend of broadening the interpretation of existing federal statutes to include nanotechnology.  Some may be:

 Positives:

●  No need to wait for Congress to act

●  Officials are already familiar with the statutes, so start-up would be minimal

●  Health and environmental concerns would start to be addressed without substantial delay

●  Nanotechnology’s discrete uses may best be regulated within statutes and by agencies that are more specialized, each dealing with different uses

 Negatives:

●  Is piecemeal regulation the best way to go, or is wholesale regulation a better approach?

●  Industry’s concerns may be ignored as the existing agencies go forward with the new interpretations

●  Potential conflicting decisions and interpretations among the various federal statutes

●  It is not at all clear that existing regulation, even if reinterpreted, reaches all of the unique issues presented by nanotechnology

 ***These concerns, and others, should be weighed in determining the best way to regulate nanotechnology.***

www.h20technologies.com

www.h20technologies.com

I previously commented on the House bill that would amend the Toxic Substances Control Act (TSCA) by updating it to include more substances, more disclosure, and expedited review by EPA.  On July 29, 2010, the House Energy and Commerce Committee’s Subcommittee on Commerce, Trade, and Consumer Protection held a hearing on the bill (H.R. 5820).  Certain themes emerged from this hearing.

 Theme 1:  The Economy.

 ●  Jobs.  All agreed that a major goal should be to avoid the loss of more jobs.  This may mean that legislation updating TSCA may proceed more slowly than the current bill would require.  This, in turn, would stall regulation of nanotechnology through TSCA.

 ●  Expense and difficulty of compliance.  Cal Dooley, President and CEO for the American Chemistry Council, representing the large chemical manufacturers in the industry, expressed concern that the increased burden and costs on manufacturers, and the longer time frame for EPA to review submissions, would result in a delay in bringing new chemicals to market and would force manufacturers to other countries.  He stated:  “We would export innovation and jobs instead of products.”

 ●  Foreign competition.  This theme was especially emphasized by Beth D. Bosley on behalf of the Society of Chemical Manufacturers and Affiliates (SOCMA), representing small chemical manufacturers.  She argued that H.R. 5820 “poses overwhelming challenges for the industry,” including the loss of innovation and chemical manufacturing to foreign markets.  She feared that the “substantive loss of high-paying manufacturing jobs will result.”

 Theme Two:  Defining a Scientific Standard

 ●  The Hearing indicated that this is certain to be a sticking point in the debate to come over H.R. 5820.

 ●  Cal Dooley of the American Chemistry Council stated:  “[T]he safety standard as established in this bill sets such an impossibly high hurdle for all chemicals in commerce that it would produce technical, bureaucratic, and commercial barriers so significant they would be the law’s undoing.”

 ●  In contrast, Richard Denison, a Senior Scientist of the Environmental Defense Fund, praised H.R. 5820 for assuring that “the best and latest science” be used for risk-based safety determinations.

 Theme Three:  Impact on Industry Innovation

 ●  Some witnesses presented testimony that H.R. 5820 would spur industry innovation by raising U.S. chemical standards to a level that would allow American companies to compete in a global economy where disclosure of information has become important.

 ●  In contrast, as the representatives of the chemical industry argued, concerns exist that innovation in the chemical industry will be exported abroad and that proprietary information will be compromised.

 What about nanotechnology?

 Though not a pervasive theme, the Hearing had some mention of nanotechnology.  Richard Denison, a Senior Scientist with the Environmental Defense Fund, said the following about the current state of nanotechnology regulation:

 “EPA has had little choice but to resort to pleading with the emerging nanotechnology industry to provide, through a voluntary program, the most basic information EPA feels it needs to decide how best to regulate these materials – only to see a level of participation best described as paltry.  Such materials can by no means be assumed to be benign; for example, one class of nanomaterials – multi-walled carbon nanotubes – behaves in a manner that is ominously similar to asbestos.”

 http://energycommerce.house.gov/documents/20100729/Denison.Testimony.07.29.2010.pdf

 Regulation of nanotechnology is coming, one way or another.  It is time to have a full discussion and debate on how best to achieve that, for the interests of the public, workers, and industry.  Currently, it appears that debate on the bill will resume in earnest when the next Congress convenes.  Let’s hope that the debate addresses these critical questions.

 Transcripts and video from the hearing may be accessed at

 http://energycommerce.house.gov/index.php?option=com_content&view=article&id=2095:hearing-on-hr-5820-the-toxic-chemicals-safety-act-of-2010&catid=129:subcommittee-on-commerce-trade-and-consumer-protection&Itemid=70