Category: Bionanotechnology

On March 20, 2012, the U.S. Supreme Court handed down its decision in Mayo Collaborative Services v. Prometheus Laboratories, Inc., 132 S. Ct. 1289 (2012).  A year ago, when the Court decided to hear the case, I wrote about it in this blog.  Now – a little belatedly – I am discussing the Court’s decision, as it has given the biotech industry reason to be concerned about its scope.

Prometheus was the sole and exclusive licensee of certain patents on methods for determining the optimal dosage of thiopurine drugs used to treat autoimmune diseases.  When Prometheus sued Mayo for patent infringement, Mayo argued that the patents in question were invalid because they claimed subject matter unpatentable under the Patent Act, 35 U.S.C. § 101. Specifically, Mayo argued that the patents impermissibly claimed natural phenomena – i.e. the correlations between drug metabolite levels and efficacy and toxicity – and not patentable inventions.  The district court had agreed with Mayo, but the Federal Circuit Court of Appeals reversed and held the patents valid.  In a unanimous opinion written by Justice Breyer, the Supreme Court reversed the Federal Circuit, stating that the Prometheus patents were invalid under § 101 because the process incorporates the unpatentable laws of nature and “well-understood, routine, conventional activity previously engaged in by researchers in the field.”  (p. 1294)  The Court stated:

    “If a law of nature is not patentable, then neither is a process reciting a law of nature, unless that process has additional features that provide practical assurance that the process is more than a drafting effort designed to monopolize the law of nature itself.” (p. 1297)

The Court determined that the patent in question in this case did not have such “additional features.”  The Court was especially concerned that future innovation could be stifled by allowing patents on certain uses of the laws of nature.  The Court said that the measurement processes at issue in this case stated such a broad use of conventional procedures that they could be read to monopolize the field, making them unpatentable subject matter.  The Court stated:

    “We need not, and do not, now decide whether were the steps at issue here less conventional, these features of the claims would prove sufficient to invalidate them. For here, as we have said, the steps add nothing of significance to the natural laws themselves. . . .The presence here of the basic underlying concern that these patents tie up too much future use of laws of nature simply reinforces our conclusion that the processes described in the patents are not patent eligible . . . .” (p. 1302)

Not surprisingly, the decision has raised red flags in the biotech industry, particularly in the areas of medical diagnostics and personalized medical treatments.  In an article in the most recent issue of the ABA Journal, author Steven Seidenberg examined the impact that the Mayo decision is likely to have on such innovation.  The experts consulted for the article all had concerns about the breadth of the decision and the chilling effect it might have on future innovation.  See Steven Seidenberg, New Laws of Nature Law:  Ruling Questions Scientific Patents,ABA Journal (Jul. 2012), at 20-21.

There are some issues that may need resolution going forward:

●  When a procedure is “less conventional” than the procedure at issue in Mayo, will it be patentable?  Or must it be “unconventional” to be patentable?

●  What exactly is a “conventional procedure”?

●  To what degree does the case represent a broadening of the “laws of nature” exception to §101?Those in the biotech industry will need to mull over this decision as new innovations are developed.

Those in the biotech industry will need to mull over this decision as new innovations are developed.

The Supreme Court’s decision is available at

www.supremecourt.gov/opinions/11pdf/10-1150.pdf

 The ABA Journal article is available at

www.abajournal.com/magazine/article/new_laws_of_nature_law_ruling_questions_scientific_patents/

Wikimedia

Wikimedia

In May 2009, the American Civil Liberties Union and the Association for Molecular Pathology filed suit, in the United States District Court for the Southern District of New York, against the United States Patent and Trademark Office and Myriad Genetics. The complaint pertained to patents that were granted on the BRCA1 and BRCA2 human genes that are mutations correlated to the increased risk of breast or ovarian cancer.  Myriad Genetics designed a procedure to test for these mutations to indicate the likelihood of a woman developing either or both of the diseases.  The complaint asserted that patents on genes should not be allowed because they are violative of § 101, patentable subject matter, of the Patent Act, namely all three of the judicially recognized exceptions to patentability:  natural phenomena, laws of nature, and abstract ideas. Subsequently, the American Civil Liberties Union and the Public Patent Foundation filed a motion for summary judgment, in August 2009.  On March 29, 2010, the District Court found that the isolated segments of DNA utilized for the diagnostic tests were “not markedly different from native DNA as it exists in nature” and held the patents granted to Myriad were not valid.  Ass’n. for Molecular Pathology v. U.S.P.T.O., 702 F. Supp. 2d 181 (S.D.N.Y. 2010).


On July 29, 2011, the United States Court of Appeals for the Federal Circuit reversed the decision of the district court stating “the molecules as claimed do not exist in nature.”  According to a report on msnbc.com, Bruce Wexler, a partner in the law firm Paul Hastings, commented “[t]he appeals court has now held that isolated DNA is patent eligible, and it recognized that isolated DNA has a different molecular structure than DNA as it exists in the body. That is a very significant result that is very important to the biotech industry.”

    
This decision is equally important to the future of the nanotech industry because the starting point for nearly all nanoparticle inventions is the same as biotech – nature.  While it is well established that those materials found in nature are not patentable, the Federal Circuit has signaled its acknowledgement of the intellectual investment inherent in the advancement of science.  There would have been seismic effects on the future of biotech and nanotech development had the district court’s decision been affirmed.  For now, it is full steam ahead for the scientists and investors.   

For further information, see an earlier post I wrote – Patents on Genes and the Future of Personal Nanomedicine.

Read the full Federal Circuit decision here: http://www.aclu.org/files/assets/10-1406.pdf

supctIn 2010, the U.S. Supreme Court issued a closely-watched decision on patentable subject matter under § 101 of the Patent Act, Bilski v. Kappos, 130 S. Ct. 3218 (2010).  The Court has now granted cert in another case on patentable subject matter – Prometheus Laboratories, Inc. v. Mayo Collaborative Services, in which the Federal Circuit Court of Appeals held in 2010 that certain medical inventions met the requirements of patentable subject matter in § 101.  Prometheus was the sole and exclusive licensee of certain patents that claim methods for determining the optimal dosage of thiopurine drugs used to treat gastrointestinal and non-gastrointestinal autoimmune diseases.  When Prometheus sued Mayo for patent infringement, Mayo filed a motion for summary judgment of invalidity, arguing that the patents in question were invalid because they claimed subject matter unpatentable under the Patent Act, 35 U.S.C. § 101. Specifically, Mayo argued that the patents impermissibly claimed natural phenomena – i.e. the correlations between drug metabolite levels and efficacy and toxicity – and not patentable inventions.  In 2008, the district court granted Mayo’s motion for summary judgment of invalidity.

In 2009, the Federal Circuit reversed and upheld the patents under the “machine or transformation” test (the sole test at the time).  The U.S. Supreme Court then decided Bilski v. Kappos, which we discussed in this blog a year ago.  In Bilski, the Court rejected the “machine or transformation” test as the definitive test of patentability, relegating that test to one factor – “a useful and important clue, an investigative tool, for determining whether some claimed inventions are processes under § 101.”  130 S. Ct. at 3227.  The Supreme Court then granted Mayo’s petition for certiorari in the Prometheus lawsuit, vacated the Federal Circuit’s 2009 decision, and remanded the case for further proceedings consistent with Bilski.  The Federal Circuit decided the case on briefs, without further oral argument, and held, in light of Bilski, that Prometheus had recited patentable subject matter under § 101.  628 F.3d 1347 (Fed. Cir. 2010).  Once again, the Supreme Court granted certiorari, and the Court will hear the case in the term that begins in October, 2011.

Although the Supreme Court has consistently construed § 101 broadly, the section does have limits.  The Federal Circuit described one limitation as follows:

The Supreme Court has . . . established that while a law of nature, natural phenomenon, or abstract idea cannot be patented, “an application of a law of nature or mathematical formula to a known structure or process may well be deserving of patent protection.”

628 F.3d at 1354 (quoting Bilski, 130 S.Ct. at 3230) (emphasis added).  This is the core of the issue to be decided by the Supreme Court. 

As my co-blogger, Eric Laury, now J.D., stated in his earlier post about Bilski, “biotech and nanotech patents are not theoretically involved with . . . a machine nor do they transform matter.”  Bilski was good news for the bionanotech industry, but the case left loose ends.  Now it appears that the Supreme Court will take another step in the direction of defining patentable subject matter for the brave new world of modern inventions.  Nanotech firms, particularly those working in the area of biotechnology, should be closely watching the Supreme Court’s next move.

Mayo presented the following question in its cert petition:  “Whether 35 U.S.C. § 101 is satisfied by a patent claim that covers observed correlations between blood test results and patient health, so that the claim effectively preempts all uses of the naturally occurring correlations, simply because well-known methods used to administer prescription drugs and test blood may involve ‘transformations’ of body chemistry.”

I suspect the fact that the Court granted cert a second time in Mayo v. Prometheus may not be a good sign for Prometheus.  It may mean that the Court had been expecting the Federal Circuit to reach the opposite result and wants to set the record straight.  On the other hand, the Court may further refine its definition of patentable subject matter under § 101 in a way that may achieve middle ground between innovation and patent protection.

The Federal Circuit’s 2010 decision may be accessed at

http://www.cafc.uscourts.gov/images/stories/opinions-orders/08-1403.pdf

supctEarlier I reported here on Microsoft Corp. v. i4i Limited Partnership, then subsequently on the oral argument before the U.S. Supreme Court.  The case arose from a patent infringement dispute relating to the method for editing computer documents, but generated wide-ranging interest in the business community, including developers of nanotechnology-based inventions, because of the broad legal issue addressed.  i4i sued Microsoft for patent infringement, and Microsoft defended on the ground that i4i’s patent was invalid.  The federal district court gave a jury instruction that the invalidity of a patent had to be proved by “clear and convincing” evidence.  Despite Microsoft’s arguments that it should be easier to prove invalidity of a patent (such as by applying a preponderance-of-the-evidence standard) in patent infringement litigation, the federal district court, Federal Circuit Court of Appeals, and the U.S. Supreme Court (in an 8-0 decision) all decided that the clear and convincing standard applied.

Justice Sotomayor, writing for the unanimous Court, 131 S. Ct. 2238 (2011), based the Court’s decision squarely on Section 282 of the Patent Act, 35 U.S.C. § 282, which provides a presumption of validity to patents, and on longstanding common-law doctrines.  The Court deferred to the judgment of Congress in the Patent Act, saying that “[w]here Congress has prescribed the governing standard of proof, its choice controls absent ‘countervailing constitutional constraints.”  (p. 2244)  No such constraints existed here.  Addressing Microsoft’s other argument – that a preponderance standard should apply where, as here, not all evidence in the case had been before the PTO during the patent examination process – the Court said that information could be a factor in the jury’s decision, but did not warrant a different standard of proof.  (p. 2250-51).

For nanotechnology firms with existing patents on inventions or in the R&D process, the Court’s decision is good news.  It provides a strong measure of certainty and economic stability to stakeholders investing in and promoting the patented technologies.  It also allows firms to bring patent infringement claims while maintaining some sense of security about their own patent’s validity.  Taken together with the 2010 Supreme Court case of Bilski v. Kappos, 129 S. Ct. 2735 (2010), which retained a broad definition for patentable subject matter, Microsoft v. i4i should provide nanotech patent holders with plenty of reason to be pleased.

 The decision is available at

http://www.supremecourt.gov/opinions/10pdf/10-290.pdf

usalawyerstoday.com

usalawyerstoday.com

We would like to thank those of you out in cyberland who have found our blog – now only 9 months old – and have been interested in what we have to say about the emerging issues in nanotechnology and the law.  We hope that you continue to follow us in the coming months.

Writing a legal analysis blog has been a challenge.  Because of our interests in cutting-edge legal issues, in particular toxic torts and biotechnology, we have especially enjoyed the challenge of relating nanotechnology to existing and evolving legal doctrines.

Our promise for 2011 is to step up the pace of our posts while still maintaining our commitment to accurate and high-quality legal analysis.  As always, we welcome your comments on the blog.

Nanotechnology is a new frontier in the law, and we look forward to being able to offer readers our thoughts and insights on how the law will meet the challenges it presents.

 Best wishes for the new year.

nano 3On November 22, 2010, EPA submitted a proposed rule under Section 8(a) of TSCA to the Office of Management and Budget for its review.  The proposed rule includes reporting requirements for manufacturers of nanoscale materials and could be published in the Federal Register for public comment in December.

 The first of three proposed rules expected in 2011, this proposed rule would require disclosure of information on manufacturing and processing, as well as on exposure and release of nanomaterials.  This is merely a prelude to any actual regulation of the industries and processes making use of nanotechnology.  It is a critical step toward reducing risks to human health and the environment.  But it also highlights the fact that regulation of nanomaterials is a long, slow process that may not yield satisfactory results for many years.

 In September, an EPA representative told members of the nanomaterials industry, “We are at the stage where we really don’t have a clear idea of how to manage risk. . . . The more information we can collect through regulation—on what is being manufactured, toxicity data, and the development of the proper protocols for measuring toxic effects of the nanomaterial—the better off we will be to manage the risk and demonstrate to the American people we have a handle on the issue.”

 The current proposal can be seen as early steps in risk assessment, but far from the risk management eventually envisioned by EPA.

The European Union may be further ahead.  On November 24, 2010, the European Parliament voted to extend its restriction on many hazardous substances to most electrical and electronic products, but stopped short of imposing a restriction on nanosilver and carbon nanotubes.  Observers say that it is likely that these substances will be incorporated into the law when the law comes up for review in three years.  Thus, the EU may be heading toward management of the risks of nanotechnology more quickly than the U.S.

 Even so, why so slow?  Regulators should get moving on resolving obstacles such as the scope of nanoscale definitions, deciding how much data is enough before effective regulation may be accomplished, and whether small businesses warrant an exception to regulation.

 

Sources (all by BNA subscription):

225 BNA Daily Env’t Rptr. A-6 (Nov. 24, 2010)

34 BNA Chemical Reg. Rptr. 1149 (Nov. 24, 2010)

34 BNA Chemical Reg. Rptr 960 (Oct. 4, 2010)

nano 5

In an earlier post, I wrote about the consternation surrounding patents on genes and the potential implications to the developing realm of nanotechnology.  Recently, an amicus brief was filed with the Federal Circuit by the Department of Justice (DOJ) opposing the patents that were issued to Myriad regrding the testing for breast and ovarian cancer.  Interestingly, the United States Patent and Trademark Office (USPTO) did not join the DOJ, which indicates an idealogical rift in the Obama administration.  It was reported that Mr. Kappos, current director of the USPTO, ”seemed chagrined that the Department of Justice was taking a viewpoint very different from the patent office.”

The following is an excerpt from the amicus brief Table of Contents which is rather revealing and informative regarding the government’s opinion on the matter:

A. Section 101 Embraces Only “Human-Made Inventions”
B. Engineered DNA Molecules, Including cDNAs, are Human-Made Inventions Eligible For Patent Protection
C. Isolated But Otherwise Unmodified Genomic DNA Is Not A Human-Made Invention
1. Unmodified Genomic DNA Is A Product Of Nature
2. “Isolation” Does Not Transform A Product Of Nature Into A Man-Made Invention
3. Isolated Genomic DNA Is Not Patent-Eligible Merely Because It Is A Literal Composition Of Matter
4. Isolated Genomic DNA Is Not Rendered Patentable On The Theory That It Is “Pure”
5. Isolated Genomic DNA Is Not Patent-Eligible Merely Because It Is Useful Or Requires Investment To Identify

It is important to note that the DOJ is not advocating an all-out ban on patents on genes, just those that are ‘unmodified.’  Initially, this will allow for further development of the information contained in the genomic code.  It seems as though the big argument revolves around the pieces of the code that are isolated, but not changed in any way.  Proponents assert that there should not be the reward of patent protection based solely on finding that which already naturally occurs.  Opponents argue that invention and development of specified uses for these segments of DNA would be stiffled, and the United States’ position as a global leader in the life sciences would be severely compromised.

It will be interesting to watch the development of the subject matter as it works its way through the Federal Circuit, and presumably the Supreme Court.  Not only for the impact it will have on the biotechnology arena, but also on nanotech.  As mentioned before, many argue that the majority of inventions involving nanotechnology do not qualify for patent protection because they are not far enough removed from the naturally occurring material they are comprised of.  We shall see.

Link to the DOJ brief:

http://graphics8.nytimes.com/packages/pdf/business/genepatents-USamicusbrief.pdf

www.h20technologies.com

www.h20technologies.com

The U.S. National Nanotechnology Initiative (NNI) Strategic Plan Draft was posted at http://strategy.nano.gov for public comment on November 1, 2010.  The NNI was launched in 2001 with 8 agencies and now consists of the nanotechnology-related activities of 25 agencies.  Fifteen of these agencies have R&D budgets related to nanotechnology.

In reflecting on the 10-year history of U.S. nanotechnology research and development, the NNI Draft highlights its work as having “established a thriving nanotechnology R&D environment, laid the crucial groundwork for developing commercial applications and scaling up production, and created demand for many new nanotechnology and manufacturing jobs in the near-term.”  (Draft, p. 1)  Looking to the future, the NNI notes that nanotechnology R&D is “far from full realization.”  (Draft, p. 2)  The goals of the NNI continue to be broad:  continued development of R&D; developing the technologies into products for commercial and consumer use; and developing the physical and human resources to achieve these goals.

Goal 4 of the Draft Strategic Plan is “Support responsible development of nanotechnology,” including the twin goals of understanding and managing the risks of the technologies.  Among the NNI participating agencies in 2010 are EPA, FDA, National Institutes of Health (NIH), and National Institute for Occupational Safety and Health (NIOSH).

The NNI Draft Strategic Plan focuses directly on the benefits of nanotechnology, rather than the risks.  But many of the participating agencies – and many more – need to be involved on the risk side of the proverbial risk-benefit analysis.  This is happening, as reported previously in posts on this blog ranging from FIFRA to TSCA to the FDCA.

 But equally important is the need for communication and coordination on both the benefits and risks of nanotechnology.  And that extends beyond governmental regulation to businesses and nongovernmental organizations (NGOs).

Aside from governmental action, various voluntary initiatives and partnerships have emerged.  A report out of the Woodrow Wilson  International Center for Scholars, “Voluntary Initiatives, Regulation, and Nanotechnology Oversight:  Charting a Path,” gives an overview of the initiatives – some publicly sponsored, some developed by business, and some representing joint business-NGO partnerships.  These initiatives have the common, though separate, goal of developing a strategy to oversee environmental, health, and safety risks raised by nanomaterials.  The report is available at http://www.nanotechproject.org/publications/archive/voluntary/

Three initiatives discussed in some detail in the report are:

 ●  “Nano Risk Framework,” jointly developed by duPont and the Environmental Defense Fund (EDF)

 ●  “Responsible Nano Code,” sponsored by stakeholders from the United Kingdom

 ●  “Nanoscale Materials Stewardship Program,” developed by EPA

 The report critically analyzes these specific initiatives – as well as others more generally – and concludes that they have a welcome role in the future of nanotechnology safety and health efforts.

The ideal world does not exist, of course.  But in this world, a strategy that incorporates the risks and benefits of these developing technologies and brings together as many varied interests as possible representing all affected parties, including the environment, is warranted.  It can provide needed checks and balances along the way.

Getty Images

Getty Images

The good news is that both the European Union and Australia are moving toward adopting definitions of “nanomaterials” that will be used for setting standards for and developing regulation of these substances.  The news that may give some people cause for thought is that the definitions are not identical.

 This post is an update to my original post on the subject and looks at two definitions.  Consider the following.

  The European Commission, in a draft recommendation currently available for public consultation, has defined “nanomaterial” as

 “a material that meets at least one of the following criteria:

– consists of particles, with one or more external dimensions in the size range 1 nm – 100 nm for more than 1% of their number size distribution;

– has internal or surface structures in one or more dimensions in the size range 1 nm – 100 nm;

– has a specific surface area by volume greater than 60 m²/cm³, excluding materials consisting of particles with a size lower than 1 nm.”  (Art. 2, Sec. 1)

 The European Commission’s draft also indicated that the definition will be used “as an overarching, broadly applicable reference term for any Union communication or legislation addressing nanomaterials.”  (Preamble, 12)  Moreover, the Commission has recommended that the definition be reviewed frequently and adjusted to reflect scientific advances.  (Preamble, 7)

The Australian government is using a different definition, however, in a new administrative process published by the National Industrial Chemicals Notification and Assessment Scheme (NICNAS).  The procedure requires new chemical manufacturers and importers to notify NICNAS of their intent to manufacture or import nanoscale chemicals and defines “nanomaterials” as

 “industrial materials intentionally produced, manufactured, or engineered to have unique properties or specific composition at the nanoscale, that is a size range typically between 1 nm and 100 nm, and is either a nano-object (i.e. that is confined in one, two, or three dimensions at the nanoscale) or is structured (i.e. having an internal or surface structure at the nanoscale”

 Further, the Notes to the working definition add that “where size distribution shows 10% or more of a substance (based on number of particles) is at the nanoscale, NICNAS will consider this substance to be a nanomaterial for risk assessment purposes.”

 The different definitions raise several issues:

 ●  The difference between 1%, per the European Commission, and 10%, per Australia’s NICNAS, could mean that many more substances would fall within the definition under EU standards than under Australia’s standards.

 ●  In an increasingly global economy, should manufacturers of nanomaterials be required to meet separate standards based upon definitions that vary from government to government?  One answer to this question is, Why not?  Manufacturers of chemicals and other products are frequently asked to meet different standards around the world, where some countries may be quite stringent and others lenient.  The tobacco industry moved a large segment of its business to Asia in response to litigation and regulation in the U.S., hoping to take advantage of a different regulatory climate.  Conversely, however, varying regulatory standards for chemicals can create difficulties and confusion for manufacturers and importers.

 ●  Nanotechnology is not only new to regulation as a discrete category, but will also be regulated in the international arena in the first instance.  Wouldn’t consistency, at least in the definition of nanomaterials, best serve this process?

 ●  Nanotechnology is widely viewed as beneficial with broad potential across all sectors of modern life.  Consistent definitions of what constitutes nanomaterials would assist firms in making business decisions going forward.

 Perhaps different definitions are only a step along the way toward ultimate agreement and consistency in the global arena.  Let’s hope so.

 The European Commission draft is available at

http://ec.europa.eu/environment/consultations/nanomaterials.htm

 The NICNAS processes are available at

http://www.nicnas.gov.au/Publications/Chemical_Gazette/pdf/2010oct_whole.pdf#page=14

Wikimedia

Wikimedia

The nexus of a large number of nanotech inventions, specifically related to personalized medicine, is biological material and other naturally occurring materials.  In order to obtain a patent, the inventor is essentially required to create a new composition of matter from that which occurs naturally.  Until recently, scientists and inventors alike have been able to satisfy this requirement, but change might be on its way.

In May 2009, the American Civil Liberties Union and the Association for Molecular Pathology filed suit, in the United States District Court for the Southern District of New York, against the United States Patent and Trademark Office and Myriad Genetics. The complaint pertained to patents that were granted on the BRCA1 and BRCA2 human genes that are mutations correlated to the increased risk of breast or ovarian cancer.  Myriad Genetics designed a procedure to test for these mutations to indicate the likelihood of a woman developing either or both of the diseases.  The complaint asserted that patents on genes should not be allowed because they are violative of § 101, patentable subject matter, of the Patent Act, namely all three of the judicially recognized exceptions to patentability:  natural phenomena, laws of nature, and abstract ideas. Subsequently, the American Civil Liberties Union and the Public Patent Foundation filed a motion for summary judgment, in August 2009.  On March 29, 2010, the District Court found that the isolated segments of DNA utilized for the diagnostic tests were “not markedly different from native DNA as it exists in nature” and held the patents granted to Myriad were not valid.  Ass’n. for Molecular Pathology v. U.S.P.T.O., 702 F. Supp. 2d 181 (S.D.N.Y. 2010) available at http://www.aclu.org/files/assets/2010-3-29-AMPvUSPTO-Opinion.pdf.

This particular case involved the nature of medical tests utilized to screen women for the specific types of cancer.   Myriad holds (held) patents on the two genes that indicate the likelihood of the woman developing cancer.  Two main issues precipitated the litigation.  First was the fact that Myriad charges more than three thousand dollars for its exclusive Comprehensive BRACAnalysis test.  This exorbitant cost prohibited many women from being able to have the test, placing them at an increased risk of developing cancer.  It was asserted that if Myriad would license the test, the cost would become more reasonable and allow for more women to benefit from the technology.  This is the specific goal of personalized medicine; however that goal is more often thwarted by the exclusionary nature of patents (absent licensing and/or collaboration).

The second concern arose from those women who actually undergo testing and are delivered a positive diagnosis for possible development of cancer.  Because Myriad held the patent on the test, the women were prevented from obtaining a second opinion to confirm the results prior to deciding to undergo preventative surgery. Examples of such prevention include radical mastectomies and ovarian removal surgery.  The combination of these concerns cuts directly to the heart of the ongoing debate:

Should patents on biological material be allowed, and if so, what does that mean for the future of scientific research and the development of personalized medicine?

The precursor to this debate harkens back to the California Supreme Court case of Moore v. Regents of the Univ. of Calif., 793 P.2d 479 (1990), where the court was asked to decide if a cancer patient had any property rights in a commercially viable invention created from his particular cancer cells.  The court ultimately decided that the plaintiff did not have any property rights in his biological materials because they considered the material discarded.  The same debate takes place today with regard to human DNA, but no specific human has a specific property right to a specific segment of the human genome.  As a result, scientists are able to use raw DNA and patents on genes are issued if the inventor/scientist has isolated a particular gene from its naturally occurring form, essentially creating a new composition of matter.  However, in light of the decision in Myriad, the fate of thousands of patents (issued and pending) might be uncertain.

Of course, I will bring the focus back to the challenges awaiting nanotechnology in the fields of personalized medicine, molecular biology, etc.  As I stated in the beginning of this post, the nexus of a large number of nanotech inventions is biological material and other naturally occurring materials.  We know from the patentable subject matter paradigm, now including Bilski, that there still exists a broad spectrum of possibilities of what is considered a “new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof . . . .”  35 U.S.C. § 101.  But, is there restriction on the horizon as a result of the Myriad decision?  Only time will tell.