Author Archive

www.singularityhub.com

www.singularityhub.com

Last week, the Organisation for Economic Co-operation and Development (OECD) issued its updated manual to support the safety testing of manufactured nanomaterials.  The OECD describes itself as follows:

 “ The Organisation for Economic Co-operation and Development (OECD) is an intergovernmental organization in which representatives of 31 industrialised countries in North America, Europe and the Asia and Pacific region, as well as the European Commission, meet to co-ordinate and harmonise policies, discuss issues of mutual concern, and work together to respond to international problems.”

 The United States is a member country of OECD.

 The Guidance Manual for the Testing of Manufactured Nanomaterials:  OECD’s Sponsorship Programme is a product of the Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology of the OECD.

 One goal of the projects contributing to the manual was to determine whether test guidelines for the safety of traditional chemicals may be suitable for testing the safety of manufactured nanomaterials.  Researchers are particularly interested in the role that particle size and specific area may play in the resulting toxicity of the nanomaterials.

What strikes me here – and when reading other sources on the safety of nanomaterials – is the need to focus on particle size as a factor in determining the health and safety risks.  In some respects, this is reminiscent of asbestos research, in which the size, shape, and characteristics of the asbestos fibers, as well as the manner in which they are bonded to or contained in the product, define the health risks associated with asbestos exposure.  It took a half century of asbestos research to arrive at an understanding of the mechanisms by which the fibers cause illness, including malignancies, and other physiological changes that may not result in illness.

The hope for nanotechnology is that this discussion and investigation are taking place sooner, rather than later, and that there is a concerted effort internationally to coordinate and share research.  Although unregulated nanomaterials are in extensive use already, and many more uses of nanotechnology become available each day, it is worth recognizing the efforts being made to identify the risks at an early stage.

Perhaps the asbestos example taught us something after all.

The manual may be accessed at:

http://www.oecd.org/department/0,3355,en_2649_37015404_1_1_1_1_1,00.html

If you are not already familiar with Ron Wernette and his excellent blog, I recommend you add it to your nanolinks at

http://www.nanotortlaw.com/nanoblog/blog.aspx

The blog keeps track of developments and learning opportunities in the field and is a perfect complement to our blog, as the blog’s mission statement demonstrates:

“The Nanotort Law Blog aims to be a useful resource for lawyers and risk managers. It will help you stay abreast of the current state of hazard assessment knowledge, pertinent governmental regulation, industry and NGO standards and guidelines, and other important information germane to environmental, health, and safety risks and potential liabilities. The Nanotort Law Blog will also offer ideas and links to other helpful resources to help you monitor, understand and manage the potential – and as yet unkown – liability risks of Nanotechnologies. “

usalawyerstoday.com

usalawyerstoday.com

Law sometimes happens in peculiar ways.  And none so peculiar as the Fifth Circuit Court of Appeals’ recent dodging of the important issues raised by climate change litigation.  What happened (or rather, didn’t happen) is so important that it merits a digression here.  It also suggests ways that courts can make law without seeming to make law, especially when the cases involve new claims, new theories, and even new technologies.  The Fifth Circuit’s maneuver should serve as a warning – and a reminder of the clever traps of procedure – to those who attempt novel theories in the era of new technology.

 Here’s what happened.  Property owners and other residents along the Mississippi Gulf coast brought a tort action against oil companies, electrical companies, and utilities, claiming that the defendants caused massive emissions of greenhouse gases that contributed to global warming, which, among other things, added to the power of Hurricane Katrina.  They sought compensation for property damage from Katrina.  The lower court dismissed the action on a pretrial motion, and the plaintiffs appealed to the Fifth Circuit Court of Appeals.  The 3-judge Fifth Circuit panel (“the panel”) reversed and held that the action could go forward, Comer v. Murphy Oil USA, 585 F.3d 855 (5th Cir. 2009), but that decision was vacated when the Fifth Circuit accepted the case for a full-bench (“en banc”) rehearing.  A number of judges recused themselves from the rehearing, presumably because of potential conflicts of interest with the case.  Last week, the Fifth Circuit said that because the court no longer had a quorum of judges, it was not empowered to rehear the case, so it dismissed the appeal and reinstated the lower court’s dismissal of the action.

 Is it really so easy to circumvent our judicial processes?

 Why is this procedural maneuver important, and what does it have to do with nanotechnology?

The net effect was to reinstate a lower court ruling over the Fifth Circuit panel’s own decision.  That lower court ruling was a dismissal of the lawsuit.  What was unusual was that the Fifth Circuit did this without considering the issues raised on appeal.  In other words, the case was decided on a technicality.  In so ruling, the Fifth Circuit rejected a variety of measures that would have allowed the rehearing to go forward.  If the court had wanted to continue with the rehearing en banc, it could have found a way.

 Nanotechnology tort actions will arrive in the courts soon enough, raising unprecedented issues (and yes, some old issues as well).  It is important that those issues (new and old) received full consideration.  The law favors deciding cases on the merits, not dodging difficult controversial and new issues.  Moreover, nanotechnology litigation will involve many industries, enormous and small, so the notion that judges may have to recuse themselves is not far-fetched.

 Most judges have past connections with big industry in this country, whether it is oil and utility companies, pharmaceutical companies, nanomaterial firms, or anything else.  They had clients who either were those companies or who were engaged in business or litigation with or against those companies.  They had investments of their own.  Their legal practices, government service, or other pre-judicial professional obligations involved them with many law firms and attorneys.  It is important that judges recuse themselves when there is the potential for a conflict of interest or even just the appearance of a conflict of interest.  But if courts will decline to hear cases because too many of their judges must recuse themselves, then the parties, and all of us, will end up on the losing side.

 And that’s not justice.

www.singularityhub.com

www.singularityhub.com

 

 

 

The President’s Cancer Panel’s Report, referenced in my previous post, makes many important statements about cancer.  One summary statement stands out.  The PCP states:

“Single-gene inherited cancer syndromes are believed to account for less than 5 percent of malignancies in the United States.  An unknown percentage of cancers develop due to normal endogenous [internal] processes [such as aging]. . . . Other cancers develop as a result of exogenous [outside of the body] factors, some of which are controllable.”

Report, Sec. 1, at 1.  The PCP then goes on to point out that the existing studies of the relationship of environmental exposures to cancer are out of date, but that even newer studies cannot take into account the many synergistic effects of multiple exposures in the environment that could lead to cancer.

Part of this problem is due to the complex chain of exposures.  The PCP summarizes the chain as follows:

Use of chemicals or other substances in industry and agriculture:  exposure of workers

Dispersal of  contaminants through:

Soil

Air

Water

Consumer products

Entry of the contaminants into the human body through various routes, which may impact both somatic cells and germ cells (egg and sperm)

Occurrence of higher levels of toxic and hormone-disrupting substances in women, including maternal blood, placental tissue, and breast milk

Transference of the substances from the mother to the next generation can occur to the fetus in utero or to a breast-feeding infant

Because the substances may interfere with the genes of the parents, without directly causing disease in the parents, these genes may predispose future generations to cancer.  This transference of the propensity to cause cancer may go from the parents’ genes to the next generation and beyond.

 In one of only a few references to nanotechnology in the Report, the PCP said:  “Limited research to date on unintended health effects of nanomarterials, for example, suggests that unanticipated environmental hazards may emerge from the push for progress.”  Report, Exec. Summary, at iii.

Where does nanotechnology fit into the chain?  At least theoretically, at every stage.  But nanotechnology is a complicating factor in an already complex scientific task.  As a kind of facilitating system – or delivery system, for lack of a more accurate description – nanotechnology may change the characteristics of the substances the technology interfaces with.  This may occur at the earliest stages of developing a use for nanomaterials, but its ultimate impact may not be seen or even measurable for years or generations.  Very little is known about this process.  At the nanolevel, some substances may be absorbed into the human body in unanticipated ways.  Now place this into the exposure chain, and the problems of characterizing and measuring risk increase exponentially.

 I will continue to sort through the Report and its relevance to nanotechnology in future posts.

http://www.cdc.gov/exposurereport/pdf/FourthReport.pdf

prod liab imageRecently, the President’s Cancer Panel released its report, “Reducing Environmental Cancer Risk: What We Can Do Now,” which made the bold and distressing statement that “the true burden of environmentally induced cancer has been grossly underestimated.”  Currently, there are approximately 80,000 chemicals on the market in the United States many of which are likely carcinogens that are used by most Americans on a regular basis in their daily lives.  The risks of these carcinogenic substances have a significantly greater impact on children than adults.  The Panel observed that most of these chemicals are “un- or understudied and largely unregulated.”  Among other things, the Panel concluded that research on the environmental causes of cancer has taken a back seat to research on the genetic and molecular mechanisms that cause cancer.  Research into the environmental causes of cancer has been given low priority and insufficient funding, they say.

 What does this report on chemicals and cancer have to do with nanotechnology?  The long-term health risks of nanotechnology are currently unknown.  If, as the Panel states, only a few hundred of those existing 80,000 chemicals have been tested for safety to date, where does that put emerging technologies such as nanotechnology?  Right now, at the bottom of the list.  And if the Panel’s recommendations are implemented, it is likely that available resources will be consumed by studying a fraction of those 80,000 chemicals.

 The Panel identified the following barriers to effective regulation of environmental contaminants:

 “(1) inadequate funding and insufficient staffing,

(2)   fragmented and overlapping authorities coupled with uneven and decentralized enforcement,

(3)   excessive regulatory complexity,

(4)   weak laws and regulations, and

(5)   undue industry influence.”

 It is worth considering the degree to which each one of these barriers to effective regulation may apply to nanotechnology, either now or in the coming months and years.

 Given this state of affairs, what is to be done?  One might reasonably ask:  Why should the public bear the burden of proving that an environmental exposure is harmful?  Would it make more sense to have industry – those developing the substances and placing them on the market – conduct the studies on the human environmental impacts in the first instance?  When it comes to consumer products, it seems that it is only after the fact – after harm has come to persons exposed – that the requisite depth of study is conducted.

 This is an ongoing discussion.  I will be examining other aspects of the Panel’s report in relation to nanotechnology in future posts.

 The report may be found at

 http://deainfo.nci.nih.gov/advisory/pcp/pcp08-09rpt/PCP_08-09_508.pdf

www.inoxpa.com

www.inoxpa.com

As I’m reading some material on the federal National Nanotechnology Initiative (NNI) web site, I am struck by the breathtakingly broad scope of nanotechnology and its incorporation into useful products that reach into every facet of life.  The NNI coordinates funding for nanotechnology R & D across 25 federal departments and agencies.  NNI promotes the development and use of the technologies through NNCO (the National Nanotechnology Coordination Office) and the NSET Subcommittee (the Nanoscale Science, Engineering, and Technology Subcommittee), and of course those 25 federal departments and agencies.  NNI also is involved in coordinating research strategies for studying the effects of nanotechnology on the environment and on the public’s health and safety.  But so far it has not taken any specific position on regulation.

 

To demonstrate what regulation could look like, it’s useful to think about the many departments, agencies, and federal acts or regulatory measures that could come within the jurisdictional scope of nanotechnology and nanosubstances.  To name just a few:

 

Department of Agriculture

Department of Labor

Department of Homeland Security

Department of the Interior

Health and Human Services

Department of Energy

Etc.

 

FDA (Food and Drug Administration)

FDCA (Food, Drug, and Cosmetic Act)

EPA (Environmental Protection Agency)

CWA (Clean Water Act)

CAA (Clean Air Act)

OSHA (Occupational Safety and Health Administration)

PEL (Permissible Exposure Limits)

NIOSH (National Institute of Occupational Safety and Health)

NSF (National Science Foundation)

FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act)

NEPA (National Environmental Protection Act)

TSCA  (Toxic Substances Control Act)

CPSC (Consumer Product Safety Commission)

FHSA (Federal Hazardous Substances Act)

SDWA (Safe Drinking Water Act)

To name only a few . . .

 

The point of this alphabet soup exercise is that nanotechnology impacts so many facets of society that developing an approach to regulation will be difficult at best.  Leaving regulation to individual agencies will by its nature be narrow, thereby missing many issues.  But broad regulation – such as a new department along the lines of Homeland Security – may lack coherence and control.  As nanoproducts proliferate and nanotechnology becomes more pervasive, regulation will come, and it must strike a balance between these two poles.

www.h20technologies.com

www.h20technologies.com

In the call for studies on the health and safety of nanoparticles in various uses, it is easy to overlook important questions about what the studies mean.  Does a study demonstrating what may be considered an adverse outcome provide a basis for legal action?  The complex answer is, “Sometimes yes and sometimes no,” or in the words of every law professor, “It depends.”

Let’s take a look a highly publicized study published in late 2009.  See Trouiller et al., Titanium Dioxide Nanoparticles Induce DNA Damage and Genetic Instability In vivo in Mice, CANCER RES. 2009; 69: (22), Nov. 15, 2009.  Researchers from UCLA conducted a study in vivo on mice to test the effects of the titanium dioxide nanoparticles, regularly used in many consumer products, including cosmetics (especially sunblocks), food coloring, toothpaste, and paint.  The researchers herald their study as the first in vivo study to demonstrate a connection between the particular substance and genetic harm.  Previous in vitro studies, they say, produced mixed results and by their very nature did not involve living tissue.

First, a word about how the law views in vitro and in vivo studies.  In vitro studies, such as the Ames test, test the effects of chemicals on bacteria or other cells in a laboratory dish, looking for genetic mutations.  These studies are sometimes offered in a legal setting to suggest that exposure to the substance is carcinogenic in human, on the theory that somatic cell mutations lead to uncontrolled cell reproduction and, ultimately, cancer.  In vivo studies compare laboratory animals exposed to a particular substance to a control group that was not exposed, looking for differences in outcomes between the two groups.  What both types of studies have in common is that they do not involve humans.  As a result, they also have in common the need to extrapolate from the test data to predictable results in humans, a process that is speculative.  In other words, both studies fall short of demonstrating exactly what will happen when humans are exposed to the substance.  But both are relatively fast, inexpensive, and do not involve the ethical dilemmas of testing on humans.

Courts bristle when plaintiffs seek to introduce this kind of evidence, without anything else, in personal injury litigation as proof that exposure to a particular substance caused their illnesses.  The role of courts in determining what evidence is admissible under the rules of evidence is designed to keep frivolous suits from consuming resources and from reaching juries, which might be more impressionable than the court.  Regulators are less constrained than courts, however.  The role of government regulators is circumscribed by the legislation giving them authority.

In the scheme of things, the law prefers in vivo studies to in vitro studies because in vivo studies demonstrate some action of the substance on mammalian living tissue.  But both types of studies are a distant second to epidemiological studies on human populations.  Such statistical studies of risk factors examine groups of humans to determine the strength of relationships between exposures and outcomes.  But even they do not examine the direct impact of the substance on human tissues.

All scientific and statistical studies used to demonstrate carcinogenicity serve to demonstrate the difficulty the law has with understanding and using the studies to make legal decisions.  In the important U.S. Supreme Court case of Daubert v. Merrell Dow Pharmaceuticals, 509 U.S. 579 (1993), in which the Court provided guidance on determining the reliability of scientific studies in the federal courts (in the context of a toxic torts case involving the prescription drug Bendectin), the Court had the following to say about the distinctions between science and litigation:

[T]here are important differences between the quest for truth in the courtroom and the quest for truth in the laboratory. Scientific conclusions are subject to perpetual revision. Law, on the other hand, must resolve disputes finally and quickly. The scientific project is advanced by broad and wide-ranging consideration of a multitude of hypotheses, for those that are incorrect will eventually be shown to be so, and that in itself is an advance. Conjectures that are probably wrong are of little use, however, in the project of reaching a quick, final, and binding legal judgment – often of great consequence – about a particular set of events in the past.

Id. at 596-97.

There is strength in numbers, however.  The more reliable studies that are conducted showing similar results, the more likely the substance will be regulated effectively.  And the more likely litigants will be able to assemble a package of expert scientific evidence that will support their positions.

 

An abstract of the article may be found at http://cancerres.aacrjournals.org/cgi/content/abstract/69/22/8784

usalawyerstoday.com

usalawyerstoday.com

In product liability litigation, product sellers often rely on the so-called state-of-the-art defense.  By raising this defense, the seller – usually the product manufacturer – argues  that the risks or hazards of the product complained of in the current litigation were not known to it at the time the product was designed, marketed, and sold to the user or consumer.  As with everything in the law, arguments abound as to how to define the state of the art.  For example, manufacturers have argued that the state of the art should be defined as the industry standard at the time.  This was essentially the argument made by asbestos insulation products manufacturers in the seminal case of Borel v. Fibreboard  Paper Products Corp., 493 F.2d 1076 (5th Cir. 1973).  The court had a very different view, however.   Reflecting concerns that using the industry standard to define the state of the art at any point in time would encourage entire industries to be lax in conducting research on the hazards of their products and/or disseminating information about known hazards to the public, the court held the manufacturers to the standards of experts in the industry.  The court defined this as follows:

The manufacturer’s status as an expert means that at a minimum he must keep abreast of scientific knowledge, discoveries, and advances and is presumed to know what is imparted thereby.  But even more importantly, the manufacturer has a duty to test and inspect his product.  The extent of research and experiment must be commensurate with the dangers involved.

Id. at 1089-90.

Plaintiffs, on the other hand, prefer to define the state of the art to reflect technology on the cutting edge of scientific knowledge at the relevant time.  This concept would limit use of the state-of-the-art defense to a much smaller group of cases and result in broad liability for product sellers.  This view completely ignores whether making the product safer was feasible at the time or whether the utility of the product was greater than the possibility of any dangers it might create.  At the extreme, sellers could be absolutely liable for any and all injuries from their products.  Thus, in Beshada v. Johns-Manville Products Corp., 447 A.2d 539 (N.J. 1982) – another asbestos failure-to-warn case – the court refused to recognize the state-of-the-art defense on policy grounds because the manufacturers were in a better position to bear the losses associated with their products, and spread those costs, than the injured victims.

But the prevailing view allows product sellers to rely on state of the art as a defense to claims for defective products.  The Third Restatement of Torts:  Products Liability (1998) refers to “the foreseeable risks of harm” as a basis of liability for defective design and failure to warn of the hazards of a product.  But what is foreseeable?  All lawyers know the answer to that question is unclear and very fact specific.

Which brings us to the risks of nanotechnology.  What should we demand of sellers of nanotechnology and the products making use of the technologies?   Should the burdens of research into the risks be greater or less because the technology is developing?  Whether or not regulation occurs, personal injury litigation will arise at some point.  It seems inevitable, given the course of other consumer and workplace products.

One thing is clear:  It will not suffice for defendants to argue that they were not aware of the potential hazards of their products if they did not conduct research into the health and safety impacts and apprise themselves of all other available and pertinent research results.  If concerns arise from initial research (as they have in some studies of nanoparticles), their obligation is to conduct further research and to use the information in product design decisions or to provide sufficient warnings.  The words of the Court of Appeals in Borel resonate here:  “But even more importantly, the manufacturer has a duty to test and inspect his product.  The extent of research and experiment must be commensurate with the dangers involved.”

www.h20technologies.com

www.h20technologies.com

We are seeing an explosion of interest in and information about nanotechnology, its uses and its risks.  The law has yet to develop in this field.  I am pleased to start the conversation in this blog on the legal issues that are beginning to emerge about nanotechnology.  My entries will focus on efforts to determine what risks the new technologies may pose to consumers and the population in general.  My expertise in the area of toxic tort law is uniquely suited to examining the emerging health concerns from the viewpoint of anticipated litigation.  My co-blogger, Eric Laury, Widener Law ’11, will focus on the legal issues involving the development and use of the technologies, including intellectual property matters.  This blog is not intended to be a news source, though it will provide some links to stories in the news that bear upon our commentary.  Rather, we intend to analyze and question the developments as they emerge, and to place them in a legal context that will be useful for attorneys, regulators, and other legal observers.  We hope that our observations will begin the discussion and debate over the legal ramifications of nanotechnology.

Every week, numerous developments are reported in the media, but I will give my attention here to just one of them.  On March 25, 2010, the President’s Council of Advisors on Science and Technology (P-CAST) issued its report on the Third Assessment of the National Nanotechnology Initiative.  Among many other things, P-CAST calls for “clear principles” for identifying the environmental, health, and safety risks of nanotechnology.  To implement this, the report recommends further development of the existing cross-agency strategic plan to link research activities and information sharing and suggests that “member agencies increase coordinated efforts to overcome barriers to effective, sustainable, and responsible commercialization of nanotechnology.”

This is vague, suitably so for the first steps toward regulation.  One might question, however, the laissez-faire approach that it supports.  To start the discussion on examining the risks of nanotechnology, it is worthwhile to consider how the Government might regulate the products of these technologies.  What would regulation of the health and environmental impacts of nanotechnology look like?  One possibility is the current P-CAST proposal – interagency exchange of information with an individual directing interagency coordination efforts.  Another model would be the creation of an umbrella agency to manage nanotechnology, including the health, environmental, and safety risks of products using the technology.  This concept would take all nanotechnology-related matters away from other agencies – which, presumably, have at least some experience with handling new technologies – and place them within the authority of the new agency.  Another model might be creating a Department of Science and Technology along the lines of the Department of Homeland Security, though determining which agencies – or which parts of which agencies – would fall within the authority of a new Department would be problematic.  Finally, we could leave well enough alone and let existing agencies regulate individual uses of nanotechnology as they arise.  Under this incremental approach, for example, the FDA could regulate medical uses of nanotechnology on a use-by-use basis.

We need to think now about regulating nanotechnology and about what structure that regulation should take.  The history of toxic tort litigation is strewn with products that were allowed on the market with little or no health and safety regulation.  The result was massive health risks, seemingly endless litigation, and studies done too long after the fact.  Just consider the course of asbestos litigation.

www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-nano-report.pdf