Category: Statutes

prod liab imageIt’s fair to say that the United States has not yet tiptoed into the waters of regulating nanotechnology directly.  Rather, new efforts at regulation of chemicals and consumer products tend toward indirect regulation.  That is, these efforts would strengthen and expand existing federal regulation.  Two examples are recent bills introduced in the House of Representatives that would amend the Toxic Substances Control Act (TSCA) and the Food Drug and Cosmetic Act (FDCA) for substances and products that may or may not contain nanomaterials.  As discussed in a previous entry in this blog, placing nanomaterials under the same regulatory standards as non-nano substances is a subject that requires discussion on its own.

 Is the current trend toward indirect regulation a good idea?  It’s certainly easier and more efficient in the short run to promulgate broad regulations that encompass a variety of substances and uses, and to amend existing statutes.  And there is no doubt that these statutes needed updating to reflect scientific advancement and new risks.  But there is a danger that regulators – and the public – would be left with the impression that once these statutes have been updated, all substances are sufficiently regulated.  With the products of nanotechnology being so diverse, it is likely that many substances would slip through the cracks of the new legislation.

 Let’s look at the two recently introduced bills.  The Toxic Chemicals Safety Act of 2010 (H.R. 5820) would amend TSCA by requiring the chemical industry to provide EPA with minimum essential data on chemical characteristics, toxicity, exposure, and use, whereupon EPA would undertake an expedited process to reduce exposures to toxic substances in the population.  An important feature of the bill provides for public disclosure of non-confidential and otherwise non-exempt information.  The text of the bill may be found at

The current text of TSCA is at 15 U.S.C. §§ 2601 et seq.

The other recently introduced bill is the Safe Cosmetics Act of 2010 (H.R. 5786), which contains provisions for protecting consumers from carcinogenic and other toxic ingredients in certain previously unregulated household products, such as perfumes, shaving creams, shampoos, and deodorants.  Like the proposed TSCA amendment, a major purpose of this bill is to update the existing FDCA and its regulations and to disclose the information regarding hazards to the public, in this case primarily through product labels.  Currently, the cosmetics industry is mostly self-regulated, and members of the industry have complained that this new bill lacks appropriate standards and would place an undue burden on the FDA.  Instead, the industry has proposed its own new requirements.

 H.R. 5786 also references nanoparticles, clearly indicating that nanotechnology was intended to be part of the amendment.  For example, Sec. 618(a)(5) requires that cosmetic manufacturers submit various information to the FDA, including “the ingredient list as it appears on the cosmetic label or insert, including the particle size of any nanoscale cosmetic ingredients.”  Sec. 618(e) goes on to authorize the Secretary of Health and Human Services to require that

 “(1) minerals and other particulate ingredients be labeled as ‘nano-scale’ on a cosmetic ingredient label or list if not less than 1 dimension is 100 nanometers or smaller for not less than 1 percent of the ingredient particles in the cosmetic; and

(2) other ingredients in a cosmetic be designated with scale-specific information on a cosmetic ingredient label or list if such ingredients possess scale-specific hazard properties.”

 The text of this bill may be found at

 Both bills seem to be a step in the right direction.  But in the context of nanotechnology, complicated questions persist.  For example:

●  Would these updated statutes reach the products of nanotechnology as effectively as they would reach substances and products that have no nano-contents?

 ●  Because benign substances may behave differently at the nanolevel, would such regulation miss potential toxic effects?

●  What science would be behind the decisions to disclose toxicity?

●  Should nanotechnology be regulated separate from chemicals and consumer products?

● Which alternative makes the most sense?

 These and others are the questions that Congress and regulators – and all those who may be potentially exposed – need fully discussed in the coming months and years.



Let’s face it:  Industry would just as soon be left alone.  But in this modern society, that’s simply not possible.  Government regulation is necessary to advance policy goals, which include the safety and health of the general public.  Industry recognizes this, of course, and wants to be able to undertake its activities knowing what the government requires (mandatory) and expects (voluntary) of it.  This is even more critical in the world of global commerce, where an industry may be subject to varying – and sometimes even contradictory – standards in different countries.  In the United States alone, separate state regulation of nanotechnology could lead to confusing and incompatible standards.

 Isn’t the nanotechnology industry entitled to a uniform set of definitions to be able to interpret and apply regulatory standards?

 This is the gist of an article that appeared recently in the BNA Daily Environment Report at

Pat Rizzuto & Bill Pritchard, Industry Developing Nanoengineered Goods Frustrated by Regulators’ Lack of Definitions, 93 Daily Envt. Rpt. (BNA) B-1 (May 17, 2010) (available by subscription)

In recent months, various bodies have been attempting to address this issue, but it is likely that nothing representing a consensus may emerge soon.  Yet, there may be some urgency to the task.  As reported in the article, one industry executive in a company developing electronics using nanomaterials said that regulatory certainty is necessary in determining whether to move its operations from the United States to China.  The article went on to discuss the efforts that many countries are making to develop standard definitions for nanomaterials.  This, of course, is only a precursor to regulation.  There is currently no agreement as to what the size of a particle means in the regulatory world and whether a workable definition should be based solely on size.

The International Organization for Standardization (ISO) hopes to have a set of definitions by the end of the year.  The article goes on to indicate that a coalition of businesses may become involved in developing standardized definitions.

 The European Commission’s Joint Research Commission (JRC) released a report July 2, 2010, emphasizing the need for a uniform definition of the term “nanomaterial” and providing “practical guidance for a definition for regulatory purposes.”  The report recommends the following criteria, suggesting that a definition:

  •  only concern particulate nanomaterials,
  •  be broadly applicable in EU legislation, and in line with other approaches worldwide,
  • use size as the only defining property.

European Commission, Joint Research Centre, Considerations on a Definition of Nanomaterial for Regulatory Purposes 5 (2010).

 The JRC report may be accessed at

 Clearly, we have not yet arrived at the point of being able to speak the same nanolanguage around the world.  Every nanostep helps, however.  But time is of the essence.  And consensus is crucial.

In the ongoing effort to determine how best to regulate nanotechnology, the first and easiest suggestion is to use existing laws and regulations that were developed for chemicals.  Some observers believe that the labyrinth of existing regulations (through FDA, EPA, OSHA, and other agencies) is sufficient to regulate nanotechnologies and nanomaterials that may pose hazards to workers or the public.  In a recent report issued by the Government Accountability Office (GAO), the GAO noted that the “use of nanomaterials in products is growing faster than our understanding of the risks these materials pose to human health and the environment” (p. 49)

 U.S. Gov’t Accountability Office, Nanotechnology:  Nanomaterials are Widely Used in Commerce, but EPA Faces Challenges in Regulating Risk (2010) (report to the Chair, Senate Committee on Env’t and Public Works), available at

 The GAO report indicated that EPA believes it has the authority and ability to regulate manufactured nanomaterials through existing federal statutes, i.e. Clean Air Act, Clean Water Act, RCRA, TSCA, and FIFRA, and that it has the authority to manage cleanups of releases of nanomaterials that may be endangering human health or the environment, pursuant to CERCLA.  EPA is currently attempting to work within the structure of these laws to address the potential hazards of nanomaterials, but the GAO report observes that there are significantly greater difficulties in addressing the potential hazards of nanotechnology than in addressing the hazards of conventional chemicals:

 ●  The hazards of nanomaterials vary with the size and shape of the particle.

 ●  Nanomaterials may be more reactive with other chemicals.

 ●  EPA officials say that “it is difficult to assess the risk of nanomaterials that are released into the environment because these materials are so varied and it is difficult to make generalizations about how they will behave once they are released.”  (p. 28)

 ●  Only a limited number of studies have been conducted to date on the hazards of nanomaterials, and existing studies on a nanomaterial constructed in one manner may not be relevant to the same nanomaterial constructed in a different manner.  In other words, “studies of similar nanomaterials may not be comparable.”  (p. 29)

 ●  Many nanomaterials have not yet been studied.

 ●  The scientific community does not currently possess all of the necessary tools, “such as models or measurement technologies” (p. 30), to even characterize or describe the nanomaterials properly, let alone fully understand how the nanoparticles behave.

 ●  Some federal environmental statutes are better suited than others to address the potential hazards of nanomaterials.

 This brief summary of the obstacles to effective analysis of the hazards of nanomaterials – and, accordingly, to effective regulation of nanomaterials – raises an important threshold question for the legal, scientific, and regulatory communities:

 Will effective regulation come from addressing nanomaterials within the existing statutory framework, which was designed for chemicals and other conventional materials?

 This question must be raised, addressed, and vigorously debated.  Right now, there is no clear answer to that important question.  If a new approach, separate from the approaches used for conventional chemicals, is more likely to result in effective regulation sooner, rather than later, then common sense may dictate going that route.  The debate should begin now, not after another decade has passed.

It is safe to say that the current state of nanotech litigation is embryonic.  There are only a handful of cases dealing with the validity of rules governing nanomaterials, and the results are
resoundingly similar – deference to the rule maker.  In Kennecott Greens Creek Mining Co. v. Mine Safety and Health Admin., 476 F.3d 94, 946 (D.C. Cir. 2007) (a three year old case that accurately represents the issue in the few cases brought before the courts), judicial review was sought regarding three regulations promulgated by MSHA. Specifically, the rules were implemented to require mining operations to utilize new engines that reduced the emission of diesel particulate matter, but it was argued that those same engines produced high levels of nanoparticle emissions  in the process.  On appeal, the court disagreed with the mine owners and took a complete deferential approach because the risks associated with nanoparticles, at this point, are speculative at best until further developments.

We should expect to see similar types of cases with the same results for some time or until there is solid proof of a substantial problem.

In June 2009, the EPA Nanomaterial Research Strategy released a list of eight questions that need to be considered to determine the risks involved with nanotechnology and quite possibly could become the nexus for non-deferential judicial opinions in the future.  Kristine L. Roberts, Nanotechnology and the Future of Litigation, LITIGATION NEWS,
Winter 2010, at 6, 8.  The list on page eight includes the following inquiries:

1) What advances in technology must occur to detect and quantify nanomaterials in the environment and biological material?
2) What are the major environmental impacts?
3) What are the exposure risks?
4) What are the effects on our health?
5) What are the ecological effects?
6) How many risk assessment approaches need to be amended/created?
7) Which nanomaterials have a high potential for release?
8)Can manufactured nanomaterials be utilized in a sustainable manner?

This list, at first glance, seems like a blunt tool when compared to the enormity of what it is attempting to procure.  However, this is one of the first proactive steps with regard to whom is going to be accountable for what in future ligation involving nanotechnology – litigation that should include more applicable standards based on
concrete information instead of automatic deference due to lack of knowledge.

As I’m reading some material on the federal National Nanotechnology Initiative (NNI) web site, I am struck by the breathtakingly broad scope of nanotechnology and its incorporation into useful products that reach into every facet of life.  The NNI coordinates funding for nanotechnology R & D across 25 federal departments and agencies.  NNI promotes the development and use of the technologies through NNCO (the National Nanotechnology Coordination Office) and the NSET Subcommittee (the Nanoscale Science, Engineering, and Technology Subcommittee), and of course those 25 federal departments and agencies.  NNI also is involved in coordinating research strategies for studying the effects of nanotechnology on the environment and on the public’s health and safety.  But so far it has not taken any specific position on regulation.


To demonstrate what regulation could look like, it’s useful to think about the many departments, agencies, and federal acts or regulatory measures that could come within the jurisdictional scope of nanotechnology and nanosubstances.  To name just a few:


Department of Agriculture

Department of Labor

Department of Homeland Security

Department of the Interior

Health and Human Services

Department of Energy



FDA (Food and Drug Administration)

FDCA (Food, Drug, and Cosmetic Act)

EPA (Environmental Protection Agency)

CWA (Clean Water Act)

CAA (Clean Air Act)

OSHA (Occupational Safety and Health Administration)

PEL (Permissible Exposure Limits)

NIOSH (National Institute of Occupational Safety and Health)

NSF (National Science Foundation)

FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act)

NEPA (National Environmental Protection Act)

TSCA  (Toxic Substances Control Act)

CPSC (Consumer Product Safety Commission)

FHSA (Federal Hazardous Substances Act)

SDWA (Safe Drinking Water Act)

To name only a few . . .


The point of this alphabet soup exercise is that nanotechnology impacts so many facets of society that developing an approach to regulation will be difficult at best.  Leaving regulation to individual agencies will by its nature be narrow, thereby missing many issues.  But broad regulation – such as a new department along the lines of Homeland Security – may lack coherence and control.  As nanoproducts proliferate and nanotechnology becomes more pervasive, regulation will come, and it must strike a balance between these two poles.

As technology in the bioscientific realm advances, there is an emerging body of law pertaining to patents on biological material, which focuses squarely on the hotly contested areas of personalized medicine and nanotechnology.  Personalized medicine is the practice of creating therapies for the specific genetic profiles of patients and their diseased cells.  Examples of the nanotechnology involved include cancer treatment, bio sensors, bio markers, bio imaging, and drug delivery systems.  The controversies are beginning to form and the potential for litigation is building.  Are these inventions worthy of patent protection?  What happens to these particles after they perform the specific task they were designed to carry out?  Is it a health issue, environmental issue, both?  These are the types of inquiries I am interested in exploring.  By no means do I purport to have expertise in ANY of the myriad fields I plan to touch on, but I am curious, though, and look forward to initiating a robust dialogue with those who are experts or those who are passionate about the direction of the law in these areas.

With that being said, I would like to begin with a broad and general overview of the current patentability issues.  The first hurdle in the patent process is actually having something that is patentable subject matter.  The nexus of the debate is 35 U.S.C. § 101 which provides:  “Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent thereof, subject to the conditions and requirements of this title.”  The statute is inherently ambiguous and has enjoyed broad interpretation, when applied by the courts, to determine if something is actually patentable subject matter.  See, e.g., Diamond v. Chakrabarty, 447 U.S. 303, 309 (1980) (statutory subject matter “include[s] anything under the sun that is made by man.”).  However, the statute does not afford limitless possibilities and probabilities to the inventors of the world.

There are three specific categories that are off limits to the powers afforded by obtaining a patent:  the laws of nature, physical phenomena, and abstract ideas.  Diamond v. Diehr, 450 U.S. 175, 185 (1981).   The primary reasoning for unpatentability was articulated in Gottschalk v. Benson, 409 U.S. 63, 67 (1972), whereby the Court reasoned that, although these three categories could be discovered, they ultimately “are the basic tools of scientific and technological work.”  The rationale is simple, if these basic building blocks of nature were allowed the protective rights of a patent, specifically the right to exclude others from practicing the inventions or discoveries, the world of research would be drastically encumbered and hindered.  These excluded categories, the basic building blocks, are utilized by scientists, inventors, and theorists to create patentable subject matter.

While the discovery of any of the three excluded categories does not qualify for patentability, the application of them that leads to a new and useful process, machine, manufacture, or composition of matter, may very well lead to a patent, including those that have helped to fuel the explosion of scientific research in biotechnology.  Diehr, 450 U.S. at 187.  Those developments have spawned the creation of personalized medicine.  Science is moving forward and is forcing the law to keep pace.

The paradigm to determine the patentability of nanotechnology related to biological material might be altered in the near future due to the Supreme Court hearing the case of In re Bilski (the discussion of this case and the implications of the opinion has the potential to occupy many future posts).  The Court heard oral arguments on In re Bilski on November 9, 2009, and the forthcoming opinion in that matter will have an impact on the patentability of processes, including those that have helped to fuel the explosion of scientific research in biotechnology.  As a result, the development of personalized medicine hangs in the balance.

In addition to the legal, scientific, and ethical debates, there are the personal policy concerns.  A few worth mentioning are those relating to autonomy, freedom to make decisions about resolving/preventing health issues, the right to feel safe about the treatments we receive, and the list goes on.  The point I am trying to make is that we are on the precipice of a new era with the interaction of nanotechnology, personalized medicine, and the law, and we stand to gain more than we could ever have imagined or we stand to lose more than we ever bargained for.

Personalized Medicine Coalition, _5_5_09.pdf