Archive for June, 2012

On March 20, 2012, the U.S. Supreme Court handed down its decision in Mayo Collaborative Services v. Prometheus Laboratories, Inc., 132 S. Ct. 1289 (2012).  A year ago, when the Court decided to hear the case, I wrote about it in this blog.  Now – a little belatedly – I am discussing the Court’s decision, as it has given the biotech industry reason to be concerned about its scope.

Prometheus was the sole and exclusive licensee of certain patents on methods for determining the optimal dosage of thiopurine drugs used to treat autoimmune diseases.  When Prometheus sued Mayo for patent infringement, Mayo argued that the patents in question were invalid because they claimed subject matter unpatentable under the Patent Act, 35 U.S.C. § 101. Specifically, Mayo argued that the patents impermissibly claimed natural phenomena – i.e. the correlations between drug metabolite levels and efficacy and toxicity – and not patentable inventions.  The district court had agreed with Mayo, but the Federal Circuit Court of Appeals reversed and held the patents valid.  In a unanimous opinion written by Justice Breyer, the Supreme Court reversed the Federal Circuit, stating that the Prometheus patents were invalid under § 101 because the process incorporates the unpatentable laws of nature and “well-understood, routine, conventional activity previously engaged in by researchers in the field.”  (p. 1294)  The Court stated:

    “If a law of nature is not patentable, then neither is a process reciting a law of nature, unless that process has additional features that provide practical assurance that the process is more than a drafting effort designed to monopolize the law of nature itself.” (p. 1297)

The Court determined that the patent in question in this case did not have such “additional features.”  The Court was especially concerned that future innovation could be stifled by allowing patents on certain uses of the laws of nature.  The Court said that the measurement processes at issue in this case stated such a broad use of conventional procedures that they could be read to monopolize the field, making them unpatentable subject matter.  The Court stated:

    “We need not, and do not, now decide whether were the steps at issue here less conventional, these features of the claims would prove sufficient to invalidate them. For here, as we have said, the steps add nothing of significance to the natural laws themselves. . . .The presence here of the basic underlying concern that these patents tie up too much future use of laws of nature simply reinforces our conclusion that the processes described in the patents are not patent eligible . . . .” (p. 1302)

Not surprisingly, the decision has raised red flags in the biotech industry, particularly in the areas of medical diagnostics and personalized medical treatments.  In an article in the most recent issue of the ABA Journal, author Steven Seidenberg examined the impact that the Mayo decision is likely to have on such innovation.  The experts consulted for the article all had concerns about the breadth of the decision and the chilling effect it might have on future innovation.  See Steven Seidenberg, New Laws of Nature Law:  Ruling Questions Scientific Patents,ABA Journal (Jul. 2012), at 20-21.

There are some issues that may need resolution going forward:

●  When a procedure is “less conventional” than the procedure at issue in Mayo, will it be patentable?  Or must it be “unconventional” to be patentable?

●  What exactly is a “conventional procedure”?

●  To what degree does the case represent a broadening of the “laws of nature” exception to §101?Those in the biotech industry will need to mull over this decision as new innovations are developed.

Those in the biotech industry will need to mull over this decision as new innovations are developed.

The Supreme Court’s decision is available at

 The ABA Journal article is available at

Many of the posts on this blog have addressed the regulation dilemma of whether to incorporate nanomaterials into the existing regulatory framework or develop separate regulations to manage their potential hazards.  This same dilemma is playing out in a slightly different way through a public-private partnership on exposures to carbon nanotubes in consumer products.

The NanoRelease project is engaged in this effort, with the support of numerous organizations, including U.S. EPA, Environment Canada, HealthCanada, and the American Chemistry Council.  Undertaken by the Government of Canada, the project has selected multi-walled carbon nanotubes in polymer to begin its study of the nature of exposures to nanomaterials.  The study includes determining likely release scenarios, evaluating release measurements, and considering needs for laboratory testing.  The research foundation has stated:  “The NanoRelease project will foster the safe development of nanomaterials by supporting development of methods to understand the release of nanomaterials used in products.”  Among other things, the group pledges to develop a “state of the science” report.

A summary of the project is available at

Both the National Institute of Occupational Safety and Health (NIOSH) and the Consumer Product Safety Commission (CPSC) are very interested in the ongoing process.  But will the ultimate result be “consensus standards” for nanomaterials that are efficient and effective?  Will consensus standards be followed by industry without a direct mandate?

Bloomberg BNA’s Daily Environment Reporter quoted John Howard, the director of NIOSH, as saying:  “We want to make sure that if we are developing consensus standards . . . that people are reading them and that people are adhering to them.  Otherwise heavy-handed government regulation – that industry always objects to – will come into fore and then we’ll have a less effective control system, a less efficient risk management system.”  (quoted in Pat Rizzuto, Regulators, Industry Sorting Through Potential Exposures to Carbon Nanotubes, 122 Daily Env’t Rep. (BNA) A-9 (June 26, 2012) (by subscription))

Will industry and governments agree on standards?  If so, some measure of regulation will be necessary, but probably not the “heavy-handed” sort that concerned Dr. Howard.  Consensus standards can be incorporated into existing regulatory regimes, perhaps rendering unnecessary separate extensive regulation for nanomaterials.  But essentially we are circling the same issue over and over again:  Is it possible to avoid separate, independent, and perhaps “heavy-handed” regulation of nanomaterials in the interest of public health and safety?  No question that it is an important issue.  And it remains unanswered.